A scalable variational inequality approach for flow through porous media models with pressure-dependent viscosity

نویسندگان

  • N. K. Mapakshi
  • J. Chang
  • K. B. Nakshatrala
چکیده

Mathematical models for flow through porous media typically enjoy the so-called maximum principles, which place bounds on the pressure field. It is highly desirable to preserve these bounds on the pressure field in predictive numerical simulations, that is, one needs to satisfy discrete maximum principles (DMP). Unfortunately, many of the existing formulations for flow through porous media models do not satisfy DMP. This paper presents a robust, scalable numerical formulation based on variational inequalities (VI), to model non-linear flows through heterogeneous, anisotropic porous media without violating DMP. VI is an optimization technique that places bounds on the numerical solutions of partial differential equations. To crystallize the ideas, a modification to Darcy equations by taking into account pressure-dependent viscosity will be discretized using the lowest-order Raviart-Thomas (RT0) and Variational Multi-scale (VMS) finite element formulations. It will be shown that these formulations violate DMP, and, in fact, these violations increase with an increase in anisotropy. It will be shown that the proposed VI-based formulation provides a viable route to enforce DMP. Moreover, it will be shown that the proposed formulation is scalable, and can work with any numerical discretization and weak form. A series of numerical benchmark problems are solved to demonstrate the effects of heterogeneity, anisotropy and non-linearity on DMP violations under the two chosen formulations (RT0 and VMS), and that of non-linearity on solver convergence for the proposed VI-based formulation. Parallel scalability on modern computational platforms will be illustrated through strong-scaling studies, which will prove the efficiency of the proposed formulation in a parallel setting. Algorithmic scalability as the problem size is scaled up will be demonstrated through novel static-scaling studies. The performed static-scaling studies can serve as a guide for users to be able to select an appropriate discretization for a given problem size.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical study of fluids with pressure dependent viscosity flowing through a rigid porous media

Abstract. Much of the work on flow through porous media, especially with regard to studies on the flow of oil, are based on “Darcy’s law” or modifications to it such as Darcy-Forchheimer or Brinkman models. While many theoretical and numerical studies concerning flow through porous media have taken into account the inhomogeneity and anisotropy of the porous solid, they have not taken into accou...

متن کامل

Gas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability

This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e.,...

متن کامل

A numerical study of fluids with pressure dependent viscosity flowing through a rigid porous medium

Abstract. Much of the work on flow through porous media, especially with regard to studies on the flow of oil, are based on “Darcy’s law” or modifications to it such as Darcy-Forchheimer or Brinkman models. While many theoretical and numerical studies concerning flow through porous media have taken into account the inhomogeneity and anisotropy of the porous solid, they have not taken into accou...

متن کامل

Global Stability for Thermal Convection in a Couple Stress Fluid Saturating a Porous Medium with Temperature-Pressure Dependent Viscosity: Galerkin Method

A global nonlinear stability analysis is performed for a couple-stress fluid layer heated from below saturating a porous medium with temperature-pressure dependent viscosity for different conducting boundary systems. Here, the global nonlinear stability threshold for convection is exactly the same as the linear instability boundary. This optimal result is important because it shows that lineari...

متن کامل

A New Approach for Constructing Pore Network Model of Two Phase Flow in Porous Media

Development of pore network models for real porous media requires a detailed understanding of physical processes occurring on the microscopic scale and a complete description of porous media morphology. In this study, the microstructure of porous media has been represented by three dimensional networks of interconnected pores and throats which are designed by an object oriented approach. Af...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 359  شماره 

صفحات  -

تاریخ انتشار 2018